#include #include #include #include #include // 简化版:CUDA 矩阵乘法核函数(直接乘加) __global__ void matMultCUDAKernel1(const float* A, const float* B, float* C, int M, int N, int K) { int row = blockIdx.y * blockDim.y + threadIdx.y; int col = blockIdx.x * blockDim.x + threadIdx.x; if(row < M && col < K){ float sum = 0.0f; for(int i = 0; i < N; ++i){ sum += A[row * N + i] * B[i * K + col]; } C[row * K + col] = sum; } } int main() { std::vector sizes = {512, 1024, 2048, 4096}; std::vector times; for(int idx = 0; idx < sizes.size(); ++idx) { int M = sizes[idx]; int N = sizes[idx]; int K = sizes[idx]; float *A = new float[M * N]; float *B = new float[N * K]; float *C = new float[M * K]; for(int i = 0; i < M * N; ++i) A[i] = rand() % 10; for(int i = 0; i < N * K; ++i) B[i] = rand() % 10; float *d_A, *d_B, *d_C; cudaMalloc(&d_A, M * N * sizeof(float)); cudaMalloc(&d_B, N * K * sizeof(float)); cudaMalloc(&d_C, M * K * sizeof(float)); cudaMemcpy(d_A, A, M * N * sizeof(float), cudaMemcpyHostToDevice); cudaMemcpy(d_B, B, N * K * sizeof(float), cudaMemcpyHostToDevice); dim3 blockSize(16, 16); dim3 gridSize((K + blockSize.x - 1) / blockSize.x, (M + blockSize.y - 1) / blockSize.y); matMultCUDAKernel1<<>>(d_A, d_B, d_C, M, N, K); cudaDeviceSynchronize(); auto start = std::chrono::high_resolution_clock::now(); matMultCUDAKernel1<<>>(d_A, d_B, d_C, M, N, K); cudaDeviceSynchronize(); auto end = std::chrono::high_resolution_clock::now(); cudaMemcpy(C, d_C, M * K * sizeof(float), cudaMemcpyDeviceToHost); std::chrono::duration duration = end - start; times.push_back(duration.count()); cudaFree(d_A); cudaFree(d_B); cudaFree(d_C); delete[] A; delete[] B; delete[] C; } std::cout << "CUDA Kernel1 矩阵乘法性能测试结果" << std::endl; std::cout << "=================================" << std::endl; std::cout << std::setw(12) << "Matrix Size" << std::setw(15) << "Time(s)" << std::setw(15) << "Time(ms)" << std::setw(15) << "GFLOPS" << std::endl; std::cout << "---------------------------------" << std::endl; for(int i = 0; i < sizes.size(); ++i) { int size = sizes[i]; double total_flops = 2.0 * size * size * size; double gflops = total_flops / (times[i] * 1e9); double time_ms = times[i] * 1000.0; std::cout << std::setw(8) << size << "x" << std::setw(3) << size << std::setw(15) << std::fixed << std::setprecision(6) << times[i] << std::setw(15) << std::fixed << std::setprecision(3) << time_ms << std::setw(15) << std::fixed << std::setprecision(2) << gflops << std::endl; } std::cout << "=================================" << std::endl; return 0; }