#include #include #include #include #include #include #include using namespace std; // 常量定义 const double G = 6.67430e-11; // 引力常数 (m^3 kg^-1 s^-2) const double DT = 0.01; // 时间步长 const int TMAX = 100; // 总时间步数 const double mass_scale = 1e24; // 质量缩放因子 const double dist_scale = 1e8; // 距离缩放因子 const double vel_scale = 1e3; // 速度缩放因子 // 三维向量结构体 struct Vec3 { double x, y, z; Vec3() : x(0), y(0), z(0) {} Vec3(double x, double y, double z) : x(x), y(y), z(z) {} Vec3 operator+(const Vec3 &other) const { return Vec3(x + other.x, y + other.y, z + other.z); } Vec3 operator-(const Vec3 &other) const { return Vec3(x - other.x, y - other.y, z - other.z); } Vec3 operator*(double scalar) const { return Vec3(x * scalar, y * scalar, z * scalar); } Vec3 operator/(double scalar) const { return Vec3(x / scalar, y / scalar, z / scalar); } double magnitude() const { return sqrt(x * x + y * y + z * z); } }; // 天体结构体 struct Body { double mass; // 质量 Vec3 position; // 位置 Vec3 velocity; // 速度 Vec3 force; // 受力 }; // 初始化天体系统 void init_bodies(vector &bodies, int n, bool verbose=false) { // 中心天体(类似太阳) bodies[0].mass = 1000 * mass_scale; bodies[0].position = Vec3(0, 0, 0); bodies[0].velocity = Vec3(0, 0, 0); // 其他天体(类似行星) for (int i = 1; i < n; i++) { bodies[i].mass = (1.0 + i * 0.5) * mass_scale; double angle = 2.0 * M_PI * i / n; double radius = (1.0 + i * 0.5) * dist_scale; bodies[i].position = Vec3(radius * cos(angle), radius * sin(angle), 0.0); // 给予切向速度以形成轨道 double orbital_speed = sqrt(G * bodies[0].mass / radius); bodies[i].velocity = Vec3(-orbital_speed * sin(angle), orbital_speed * cos(angle), 0.0); } // 输出初始状态 if(verbose){ cout << fixed << setprecision(6); cout << "\n初始状态:" << endl; for (int i = 0; i < n; i++) { cout << "天体 " << i << ": 质量=" << bodies[i].mass / mass_scale << "e24 kg, " << "位置=(" << bodies[i].position.x / dist_scale << ", " << bodies[i].position.y / dist_scale << ", " << bodies[i].position.z / dist_scale << ")e8 m" << endl; } } } // 计算local_particles中每个物体受到all_particles中所有物体的作用力 // 并更新local_particles中物体的速度和位置 void compute_local_forces(vector& local_particles, const vector& all_particles, int local_start) { for (size_t i = 0; i < local_particles.size(); i++) { Vec3 total_force(0, 0, 0); int global_idx = local_start + i; // 计算all_particles中所有物体对local_particles[i]的作用力 for (size_t j = 0; j < all_particles.size(); j++) { // 跳过自己 if (global_idx == static_cast(j)) continue; // 计算从物体i指向物体j的向量 Vec3 r_vec = all_particles[j].position - local_particles[i].position; double distance = r_vec.magnitude(); // 避免除以零 if (distance < 1e-10) continue; // 计算引力大小 double force_magnitude = G * local_particles[i].mass * all_particles[j].mass / (distance * distance); // 计算力的方向并累加 Vec3 force_direction = r_vec / distance; total_force = total_force + force_direction * force_magnitude; } // 更新local_particles[i]的速度和位置 Vec3 v_new = local_particles[i].velocity + total_force * DT / local_particles[i].mass; Vec3 x_new = local_particles[i].position + v_new * DT; local_particles[i].velocity = v_new; local_particles[i].position = x_new; } } void get_rank_info(int rank_id, int bodies_count, // total number of bodies int world_size, // total number of processes int& send_size, // number of bodies to be sent from `rank_id` process int& send_offset // offset of bodies to be sent from `rank_id` process ) { int particles_per_proc = bodies_count / world_size; int remainder = bodies_count % world_size; if (rank_id < remainder) { send_size = particles_per_proc + 1; send_offset = rank_id * (particles_per_proc + 1); } else { send_size = particles_per_proc; send_offset = rank_id * particles_per_proc + remainder; } // for np = 2 and bodies_count = 5 // rank_id=0: send_size=3, send_offset=0 // rank_id=1: send_size=2, send_offset=3 } int main(int argc, char **argv) { MPI_Init(&argc, &argv); // 获取进程数量和当前进程rank int world_size, world_rank; bool verbose=false; MPI_Comm_size(MPI_COMM_WORLD, &world_size); MPI_Comm_rank(MPI_COMM_WORLD, &world_rank); // 从命令行参数获取天体数量 int n = 4; // 默认4个天体 if (argc > 1) { n = atoi(argv[1]); } if (argc > 2) { verbose = (strcmp(argv[2], "--verbose") == 0 || strcmp(argv[2], "-v") == 0); } // 只有rank 0打印初始信息 if (verbose && world_rank == 0) { cout << "N体问题并行模拟" << endl; cout << "天体数量: " << n << endl; cout << "进程数量: " << world_size << endl; cout << "时间步长: " << DT << " s" << endl; cout << "总步数: " << TMAX << endl; cout << "----------------------------------------" << endl; } // 定义Body的MPI数据类型 // Body结构包含: mass(1) + position(3) + velocity(3) + force(3) = 10个double MPI_Datatype MPI_BODY; MPI_Type_contiguous(10, MPI_DOUBLE, &MPI_BODY); MPI_Type_commit(&MPI_BODY); // ============================================ // 步骤1: 获取分配给本进程的物体的初始信息local_particles // 步骤2: 获取应用程序中所有物体的信息all_particles // ============================================ vector all_particles(n); vector local_particles; // 计算每个进程分配到的物体数量 int particles_per_proc = n / world_size; int remainder = n % world_size; int local_start, local_count; if (world_rank < remainder) { local_count = particles_per_proc + 1; local_start = world_rank * local_count; } else { local_count = particles_per_proc; local_start = world_rank * particles_per_proc + remainder; } // Rank 0初始化所有物体 if (world_rank == 0) { init_bodies(all_particles, n, verbose); } // 广播所有物体的初始信息到所有进程 MPI_Bcast(all_particles.data(), n, MPI_BODY, 0, MPI_COMM_WORLD); // 每个进程提取自己负责的物体 local_particles.resize(local_count); for (int i = 0; i < local_count; i++) { local_particles[i] = all_particles[local_start + i]; } if (world_rank == 0) { cout << "\n开始模拟..." << endl; } // 创建发送和接收缓冲区信息 vector all_send_size(world_size); vector all_send_offset(world_size); for (int r = 0; r < world_size; r++) { get_rank_info(r, n, world_size, all_send_size[r], all_send_offset[r]); #ifdef DEBUG if (world_rank == 0) { // 只让rank 0打印 cout << "Process " << r << " will send " << all_send_size[r] << " bodies starting from offset " << all_send_offset[r] << endl; } #endif } double start_time = MPI_Wtime(); vector send_buf(local_count); // 使用local_count确定大小 #ifdef DEBUG if (verbose || world_rank == 0) { cout << fixed << setprecision(6); cout << "\n进程 " << world_rank << " 负责天体 " << local_start << " 到 " << (local_start + local_count - 1) << endl; } #endif // ============================================ // 主循环:N体模拟 // ============================================ for (int t = 0; t < TMAX; t++) { // ------------------------------------------ // 计算所有物体对分配给本进程的物体的作用力 // 并据此更新local_particles的本进程的物体信息 // ------------------------------------------ compute_local_forces(local_particles, all_particles, local_start); // ------------------------------------------ // 将本进程信息local_particles保存到发送缓冲区send_buf // 同时更新all_particles中的部分信息 // ------------------------------------------ send_buf = local_particles; // 更新all_particles中本进程负责的部分信息 for (int i = 0; i < local_count; i++) { all_particles[local_start + i] = local_particles[i]; } // ------------------------------------------ // 环形通信:对每个进程进行m-1次通信 // ------------------------------------------ MPI_Allgatherv(send_buf.data(), local_count, MPI_BODY, all_particles.data(), all_send_size.data(), all_send_offset.data(), MPI_BODY, MPI_COMM_WORLD); // 每10步输出一次状态(仅rank 0) if (verbose && (t + 1) % 10 == 0 && world_rank == 0) { cout << "时间步 " << t + 1 << ":" << endl; for (int i = 0; i < n; i++) { cout << " 天体 " << i << ": " << "位置=(" << all_particles[i].position.x / dist_scale << ", " << all_particles[i].position.y / dist_scale << ", " << all_particles[i].position.z / dist_scale << ")e8 m, " << "速度=(" << all_particles[i].velocity.x / vel_scale << ", " << all_particles[i].velocity.y / vel_scale << ", " << all_particles[i].velocity.z / vel_scale << ")e3 m/s" << endl; } } } if (world_rank == 0) { cout << "" << endl; double end_time = MPI_Wtime(); cout << "模拟用时: " << end_time - start_time << " 秒" << endl; cout << "\n模拟完成!" << endl; } MPI_Type_free(&MPI_BODY); MPI_Finalize(); return 0; }